Calculus I - Linear Approximations (2024)

Show Mobile Notice Show All NotesHide All Notes

Mobile Notice

You appear to be on a device with a "narrow" screen width (i.e. you are probably on a mobile phone). Due to the nature of the mathematics on this site it is best views in landscape mode. If your device is not in landscape mode many of the equations will run off the side of your device (should be able to scroll to see them) and some of the menu items will be cut off due to the narrow screen width.

Section 4.11 : Linear Approximations

In this section we’re going to take a look at an application not of derivatives but of the tangent line to a function. Of course, to get the tangent line we do need to take derivatives, so in some way this is an application of derivatives as well.

Given a function, \(f\left( x \right)\), we can find its tangent at \(x = a\). The equation of the tangent line, which we’ll call \(L\left( x \right)\) for this discussion, is,

\[L\left( x \right) = f\left( a \right) + f'\left( a \right)\left( {x - a} \right)\]

Take a look at the following graph of a function and its tangent line.

Calculus I - Linear Approximations (1)

From this graph we can see that near \(x = a\) the tangent line and the function have nearly the same graph. On occasion we will use the tangent line, \(L\left( x \right)\), as an approximation to the function, \(f\left( x \right)\), near \(x = a\). In these cases we call the tangent line the linear approximation to the function at \(x = a\).

So, why would we do this? Let’s take a look at an example.

Example 1 Determine the linear approximation for \(f\left( x \right) = \sqrt[3]{x}\) at \(x = 8\). Use the linear approximation to approximate the value of \(\sqrt[3]{{8.05}}\) and \(\sqrt[3]{{25}}\).

Show Solution

Since this is just the tangent line there really isn’t a whole lot to finding the linear approximation.

\[f'\left( x \right) = \frac{1}{3}{x^{ - \frac{2}{3}}} = \frac{1}{{3\,\sqrt[3]{{{x^2}}}}}\hspace{0.5in}f\left( 8 \right) = 2\hspace{0.25in}f'\left( 8 \right) = \frac{1}{{12}}\]

The linear approximation is then,

\[L\left( x \right) = 2 + \frac{1}{{12}}\left( {x - 8} \right) = \frac{1}{{12}}x + \frac{4}{3}\]

Now, the approximations are nothing more than plugging the given values of \(x\) into the linear approximation. For comparison purposes we’ll also compute the exact values.

\[\begin{align*}L\left( {8.05} \right) & = 2.00416667 & \hspace{0.75in} \sqrt[3]{{8.05}} & = 2.00415802\\ L\left( {25} \right) & = 3.41666667 & \hspace{0.75in} \sqrt[3]{{25}} & = 2.92401774\end{align*}\]

So, at \(x = 8.05\) this linear approximation does a very good job of approximating the actual value. However, at \(x = 25\) it doesn’t do such a good job.

This shouldn’t be too surprising if you think about it. Near \(x = 8\) both the function and the linear approximation have nearly the same slope and since they both pass through the point \(\left( {8,2} \right)\) they should have nearly the same value as long as we stay close to \(x = 8\). However, as we move away from \(x = 8\) the linear approximation is a line and so will always have the same slope while the function’s slope will change as \(x\) changes and so the function will, in all likelihood, move away from the linear approximation.

Here’s a quick sketch of the function and its linear approximation at \(x = 8\).

Calculus I - Linear Approximations (2)

As noted above, the farther from \(x = 8\) we get the more distance separates the function itself and its linear approximation.

Linear approximations do a very good job of approximating values of \(f\left( x \right)\) as long as we stay “near” \(x = a\). However, the farther away from \(x = a\) we get the worse the approximation is liable to be. The main problem here is that how near we need to stay to \(x = a\) in order to get a good approximation will depend upon both the function we’re using and the value of \(x = a\) that we’re using. Also, there will often be no easy way of predicting how far away from \(x = a\) we can get and still have a “good” approximation.

Let’s take a look at another example that is actually used fairly heavily in some places.

Example 2 Determine the linear approximation for \(\sin \theta \) at \(\theta = 0\).

Show Solution

Again, there really isn’t a whole lot to this example. All that we need to do is compute the tangent line to \(\sin \theta \) at \(\theta = 0\).

\[\begin{align*}f\left( \theta \right) & = \sin \theta & \hspace{0.75in} f'\left( \theta \right) & = \cos \theta \\ f\left( 0 \right) & = 0 & \hspace{0.75in}f'\left( 0 \right) & = 1\end{align*}\]

The linear approximation is,

\[\begin{align*}L\left( \theta \right) & = f\left( 0 \right) + f'\left( 0 \right)\left( {\theta - a} \right)\\ & = 0 + \left( 1 \right)\left( {\theta - 0} \right)\\ & = \theta \end{align*}\]

So, as long as \(\theta \) stays small we can say that \(\sin \theta \approx \theta \).

This is actually a somewhat important linear approximation. In optics this linear approximation is often used to simplify formulas. This linear approximation is also used to help describe the motion of a pendulum and vibrations in a string.

Calculus I - Linear Approximations (2024)
Top Articles
Three Jewish students sue UCLA, saying protesters blocked access to campus facilities
‘Quad Gods’ Review: HBO’s Esports Documentary Upends One-Size-Fits-All Disability Storytelling
Devotion Showtimes Near Xscape Theatres Blankenbaker 16
55Th And Kedzie Elite Staffing
Minooka Channahon Patch
Cintas Pay Bill
Unitedhealthcare Hwp
Tj Nails Victoria Tx
Ventura Craigs List
Imbigswoo
Over70Dating Login
[2024] How to watch Sound of Freedom on Hulu
Erin Kate Dolan Twitter
Cincinnati Bearcats roll to 66-13 win over Eastern Kentucky in season-opener
The Binding of Isaac
Best Fare Finder Avanti
Best Forensic Pathology Careers + Salary Outlook | HealthGrad
Average Salary in Philippines in 2024 - Timeular
Quick Answer: When Is The Zellwood Corn Festival - BikeHike
Best Nail Salons Open Near Me
Reicks View Farms Grain Bids
Znamy dalsze plany Magdaleny Fręch. Nie będzie nawet chwili przerwy
Craigslist Ludington Michigan
4 Methods to Fix “Vortex Mods Cannot Be Deployed” Issue - MiniTool Partition Wizard
Nk 1399
Tom Thumb Direct2Hr
30+ useful Dutch apps for new expats in the Netherlands
Kaliii - Area Codes Lyrics
Happy Shuttle Cancun Review
Datingscout Wantmatures
DIY Building Plans for a Picnic Table
Swimgs Yuzzle Wuzzle Yups Wits Sadie Plant Tune 3 Tabs Winnie The Pooh Halloween Bob The Builder Christmas Autumns Cow Dog Pig Tim Cook’s Birthday Buff Work It Out Wombats Pineview Playtime Chronicles Day Of The Dead The Alpha Baa Baa Twinkle
Half Inning In Which The Home Team Bats Crossword
Wasmo Link Telegram
The Hoplite Revolution and the Rise of the Polis
Forager How-to Get Archaeology Items - Dino Egg, Anchor, Fossil, Frozen Relic, Frozen Squid, Kapala, Lava Eel, and More!
Haley Gifts :: Stardew Valley
Old Peterbilt For Sale Craigslist
Lake Dunson Robertson Funeral Home Lagrange Georgia Obituary
Selfservice Bright Lending
Pensacola Cars Craigslist
Trap Candy Strain Leafly
Janaki Kalaganaledu Serial Today Episode Written Update
Gotrax Scooter Error Code E2
St Vrain Schoology
Gw2 Support Specter
Lorton Transfer Station
SF bay area cars & trucks "chevrolet 50" - craigslist
Gelato 47 Allbud
303-615-0055
Tommy Gold Lpsg
683 Job Calls
Latest Posts
Article information

Author: Catherine Tremblay

Last Updated:

Views: 5913

Rating: 4.7 / 5 (47 voted)

Reviews: 86% of readers found this page helpful

Author information

Name: Catherine Tremblay

Birthday: 1999-09-23

Address: Suite 461 73643 Sherril Loaf, Dickinsonland, AZ 47941-2379

Phone: +2678139151039

Job: International Administration Supervisor

Hobby: Dowsing, Snowboarding, Rowing, Beekeeping, Calligraphy, Shooting, Air sports

Introduction: My name is Catherine Tremblay, I am a precious, perfect, tasty, enthusiastic, inexpensive, vast, kind person who loves writing and wants to share my knowledge and understanding with you.